1. Right now it must be November, so 12 months from now it will be November, 24 months from now it will be November, etc. Whenever a number is divisible by 12, that many months from now it will be November. Using a calculator, 2004 is divisible by 12, so 2004 months from now, it will be November. So 2008 months from now, it will be March (count forward 4 more months.).

Answer: March
2. The third side length cannot be 1 since we have:

So the third side length can be $2,3,4, \ldots$ until 14 (15 will not work as shown in the question).

There are $14-2+1=13$ such possibilities.
Note: The exact condition on 3 numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ forming a triangle is $\mathrm{a}+\mathrm{b}>\mathrm{c}, \mathrm{b}+$ $c>a$, AND $a+c>b$.

Answer: 13
3. The digit " 2 " appears 10 times in the tens digit, in 20, 21, $\ldots, 29$. The digit " 2 " appears 10 more times in the ones digit in $2,12, \ldots, 92$. Note it appears twice in the same number 22. But in total we still have $10+10=20$ appearances.

Answer: $\underline{20}$
4. You really just have to check and see that $1,3,5,15$ are the only ones. So there are 4. It helps a lot if you draw a factor tree to split up odd and even factors, and/or write $60=2^{2} \times 3 \times 5$.

Answer: 4
5. First, you go counterclockwise to the school, this takes 270°.

$=3 \times 3 \times 3+3 \times 3 \times 3=54$
If you are familiar with exponents and algebra, you could have just done

$$
\frac{3^{15}+3^{15}}{3^{12}}=2 \times \frac{3^{15}}{3^{12}}=2 \times 3^{3}=54
$$

Answer: 54
6. This question tests the student's sense of ratios. 2 apples become 5 bananas, so 12 apples become $12 / 2 \times 5=6 \times 5=30$ bananas. And every 3 bananas will become 1 orange, so in the end, there are 10 oranges.

Answer: 10
7. On average his animals have 3 legs, so he must have an equal amount of chickens and cows. Since he has 18 animals (18 heads), he has 9 cows and 9 chickens.
A lot students who did not notice the "average of 3" can still figure out the answer through trial and error.
Advanced students can use variables:
Let x be the number of chickens, y be the number of cows.
$<1>\quad x+y=18$, since 18 heads;
$<2>\quad 2 \mathrm{x}+4 \mathrm{y}=54$, since 54 legs.
$<2>-2<1>: \quad 2 y=18$
$\mathrm{y}=9$.
Answer: 9
8. The numbers from 1 to 25 sum up to $13 \times 25=325$, since the average of the 25 numbers is 13 . Since each row has the same sum, each row's sum must be $325 \div 5$ $=65$. Note: This question was very hard for a Part C. To sum up the numbers from 1 to 25 is quite difficult. Some students may have done it by just punching $1+2+3+\ldots+25$ into their calculator, though.

Answer: $6 \underline{6}$

