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Part F

1. Here is the diagram:

(-2,-2) 1

We can get the area of the white triangle by taking the area of the entire rectangle
and subtracting the areas of the three shaded triangles.

3X6 2x4 2x5

5 X6 — 5 5 5

=30—-9—-4-5=12

So, the area of the white triangle is .

2. Let ty denote the number of integers that appear before (and including) the last
occurence of the integer k in the sequence. That is, t; = 1,15 = 3,13 = 6, .... Notice
k(k—1)

that ty =1+2+ 3+ + &k = HED,

Let the 2014'" number in the sequence be n. Then t,_; < 2014 < t,,, which means

that . ) .
(n - ?“_)<2m433@5—L

" (n—1)(n—2) <4028 < n(n —1).

The only integer n that satisfies this equation (which can be found by trial-and-error)

1s .

Remark: A closed formula for the nth term in the sequence is b /2n + ;11 + %J .

3. If (2% + x + 47) (2% — 42 — 21) = 0, then either 2% +z + 47 = 0 or 2 — 4z — 21 = 0.

However, 22 + o + 47 = 0 is never true for real numbers, because the quadratic
discriminant is negative: b? — dac = 12 — 4(1)(47) = —187.

On the other hand, 22 — 4x — 21 has two real solutions, because its discriminant is
positive: * — 4ac = (—4)? — 4(1)(—21) = 100. By Vieta’s formulas, the product of
the solutions to 2% — 4z — 21 is ¢/a = —21/1 = —21. So, the product of all solutions
is .

Alternatively, after noticing that 24247 has no solutions, we can factor x? —4z—21
to obtain (z — 7)(z + 3) = 0. That means the two solutions are v = 7 or = —3,

and the product of 7 and —3 is .
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4. We manipulate the given equation to something easier to work with. We have

1 1
T y_4
dy +4dr =y

xy —4r —4y =0
xy —4dr — 4y + 16 = 16
(2 2)(y—4) =16

Since x and y are integers, so are x — 4 and y — 4. Hence, x — 4 and y — 4 must be
two factors of 16 that multiply to 16.

Note that 16 has ten factors (they are £1, £2, +4, £8, and £16). For each possible
choice of x — 4 among these ten factors, there is exactly one possible choice for y — 4
so that (z —4)(y —4) = 16. Thus, the equation (z — 4)(y —4) = 16 has 10 integer
solutions.

Do all the solutions to (x —4)(y —4) = 16 also satisfy 1/x+1/y = 1/47 The answer
is NO, because in the second equation, z and y cannot be 0. If x = 0 in the first
equation, then we have —4(y — 4) = 16, so that y = 0 (and similarly, if y = 0 then
x = 0). Thus, (0,0) is the only pair (z,y) satisfying (z — 4)(y — 4) = 16 but not
1z +1/y=1/4.

Hence there are 10 — 1 =[9] integer solutions to 1/z + 1/y = 1/4.

5. We claim that the probability that Bob flips more heads than Alice is equal to the
probability that Bob flips more tails than Alice. Consider any configuration of coins
in which Bob has more heads than Alice. By swapping all the heads to tails and
all the tails to heads, we obtain a configuration of coins in which Bob has more
tails than Alice. On the other hand, consider a configuration of coins in which Bob
has more tails than Alice. By swapping all the tails to heads and all the heads to
tails, we obtain a configuration in which Bob has more heads than Alice. Thus, the
probability that Bob flips more heads than Alice is equal to the probability that Bob
flips more tails than Alice.

Finally, note that since Bob has 11 coins and Alice has 10 coins, it is impossible for
them to both flip the same number of heads and the same number of tails (because if
they did, then that would mean they have the same number of coins). Hence, either
Bob flips more heads than Alice or Bob flips more tails than Alice. By our argument
above, these two probabilities are equal. Since they are the only possibilities, they

must each be equal to [1/2].

More formally, let H, and H, denote the number of heads Alice and Bob flip re-
spectively. Let T, and T}, denote the number of tails Alice and Bob flip respectively.
Then H, +T, = 10 and H, + T, = 11. Let Pr(A) denote the probability of event A.

Notice that

Pr(H, > H,)

Pr(H,—1> H,)

= (10 T, > 10 - T,)
= Pi(T, < T0)

= P(Tb>Ta).
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By symmetry, Pr(H, > H,) = Pr(T, > T,). Hence,

1= Pr(H, > H,) + Pr(T, > T,) = 2Pr(H, > H,),

1
Pr(H, > H,) = .

Remark: The same argument shows that whenever Alice and Bob flip an unequal
number of coins, the probability that Bob flips more heads (or more tails) than Alice
is 1/2.

so we have

. Double the median AD to AE and connect EB and EC, as shown below.

B E

sqrt(15)

Consider the quadrilateral ABEC. Since the diagonals (AEF and BC') bisect each
other, it follows that ABEC' is a parallelogram. Hence, EC' = AB = 1 and BE =
AC = +/15. Moreover, the triangle ACE (with side lengths 1,+/15, and 4), is a right
triangle since 12 + (v/15)? = 4%, Thus, ABEC is a rectangle.

Therefore, the area of AABC is equal to half of the area of rectangle ABFEC which

is 1 x v/15. Hence, the area of AABC is |V15/2/|.

. Notice that we can fill in the grid with the number of ways to get to each square by
starting at A, then filling the columns from left to right, shaded columns upwards
and white columns downwards.

We start by putting a 1 in the starting square. Then, we fill in the squares by the
following rules:
e The number of ways to get to a shaded square is the sum of the numbers
immediately down and to the left.
e The number of ways to get to a white square is the sum of the numbers imme-
diately up and to the left.
This works because the number of ways to get to any square is the sum of the number
of ways to get to the squares from which you can enter that square.

This results in the following grid:
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1|1|15]15 IQOB

1| 241429 |175

1| 3 |12]41|146

1|4 | 950|105

1|5]|5 (55|55
A

The number that ends up the top-right corner is 190, so the number of ways to get
to B is [ 190].

Remark: This is a technique called dynamic programming, and it is very useful.

8. For each clown i, let A; be the set of days it performs on. Since there are 4 days,
A; is a subset of {1,2,3,4}. For example, if clown ¢ performs on days 2 and 3, then
A; = {2,3}. Note that there are 16 possibilities for A;, since there are 16 subsets of
{1,2,3,4} (including the empty subset). Consider the following grouping of the 16
subsets of {1,2,3,4}:

{},{1},{1,2},{1,2,3},{1,2,3,4}

{3},{1,3},{1,3,4}

{4},{1,4},{1,2,4}

{2},{2,3}.{2,3,4}

{2,4}

{34}

Now, I claim that two clowns cannot have their A;’s be from the same grouping
(which means their A;’s can’t be the same). Because if this were the case, then one
of them will have their A; be a (not necessarily strict) subset of the other, which

means that clown only performs on days the other also performs on, which means
he will never be seen by the other clown.

Since there are only 6 groupings, there cannot be more than 6 clowns if we want
each to have seen the act of each other clown at least once. Now let’s show that this
is indeed possible with 6 clowns. If A; = {1,2} Ay = {1,3} A3 = {1,4} Ay ={2,3}
As = {2,4} Ag = {3,4} then for any pair of them, each one will perform on a day
the other doesn’t, and therefore each clown will see the act of each other clown at
least once over the course of the 4 days. Answer: @



