Student Name:

\qquad

1. A hen is called a "super hen" if it can lay more than one egg in a day. If 2 super hens lay 18 eggs in 3 days, with the same productivity, how many eggs will 1 super hen lay in 1 day?

If 2 super hens lay 18 eggs in 3 days, then 1 super hen will lay 9 eggs in 3 days ($18 / 2=$ 9). If 1 super hen will lay 9 eggs in 3 days, then 1 super hen will lay 3 eggs in 1 day (9 / $3=3$).
2. The product of three consecutive whole numbers is 60 . What is their sum?

This question may be solved with variables. However, given that for 3 consecutive numbers' product to equal 60 , the numbers must be low. In particular 5×6 is already 30 so we know the first of the consecutive numbers is smaller than 5 . By intuition, we find that $3 \times 4 \times 5=60$. Therefore, the sum of these 3 numbers is simply:

$$
3+4+5=12
$$

3. A square of side length 4 and a square of side length 3 overlap to form a square of side length 2 , as shown. What is the area of the shaded region?

Let A represent the area of the large square.
Let B represent the area of the small square.
Let C represent the area of the overlapping square from A and B.

$$
\begin{gathered}
A=4 \times 4=16 \\
B=3 \times 3=9 \\
C=2 \times 2=4
\end{gathered}
$$

Area of the shape formed by overlapping A and B is given by:

$$
16+9-4=21
$$

Since C is the overlapping square and would otherwise be counted twice.However, the overlapping square is not shaded. Thus, the area of the shaded region is:

$$
21-4=\mathbf{1 7}
$$

Student Name:

4. A, B, C, D, and E are sitting in a row of five seats. A is not beside B. C is beside D. Who cannot be sitting in the middle seat?

With A in the middle, the arrangement "BEACD" can be made, which satisfies the conditions. With B in the middle, the arrangement "EABCD" can be made, which satisfies the conditions. With C in the middle, the arrangement "ADCEB" can be made, which satisfies the conditions. With D in the middle, the arrangement "ACDEB" can be made, which satisfies the conditions. With E in the middle, for C and D to sit together, A and B must sit together (i.e. CDEAB), which violates one of the conditions. For A and B to not sit together, C and D cannot sit together (i.e. ACEDB), which also violates one of the conditions. Thus, \boldsymbol{E} cannot sit in the middle.
5. There are 20 questions on a test. A correct answer gets you 5 marks and an incorrect answer makes you lose 1 mark. Joe scored 82 on the test and he answered all questions. How many questions did he answer correctly?

Let x represent the number of correct answers scored by Joe. Then we can solve for the following equation if there are only 20 questions and all are answered:

$$
\begin{gathered}
5 x+(20-x)(-1)=82 \\
5 x-20+x=82 \\
6 x=102 \\
x=17
\end{gathered}
$$

Therefore, Joe scored $\mathbf{1 7}$ answers correctly.
Alternatively, all correct answers will lead to a total mark of a multiple of 5. Since Joe got 82 , not a multiple of 5 , so Joe must had some number of wrong answers. Observing 82 is lower than 85 (the next number above 82 that is a multiple of 5) by 3 , is it possible that Joe got 3 questions wrong? Try it: 3 wrong questions got $-1 \times 3=-3$, among 20 questions, he got 20-3=17 questions right, obtaining $17 \times 5=85$, so the total mark is 85 $-3=82$, which satisfies the condition. So $\mathbf{1 7}$ is the answer.
6. If $\mathrm{X} \geq 3$ and $1.5 \leq \mathrm{Y} \leq 7.5$, what is the maximum possible value for $\mathrm{Y}-\mathrm{X}$?

To maximize $Y-X$, we need to make Y as large as possible and X as small as possible (convince yourself of this). Since $1.5 \leq Y \leq 7.5$, choose Y to be 7.5 . Since $X \geq 3$, choose X to be 3. Then, $Y-X=7.5-3=4.5$.
7. One day, Jim wakes up and discovers that a thief has invaded his wardrobe, leaving him with only 2 shirts, 3 pants, and 1 hat. Obviously, Jim has to wear a shirt and a pair of pants, but the hat is optional. How many ways are there for Jim to dress?

Jim has 2 shirts to choose from and 3 pants to choose from. For his hat, however, he has 2 choices (one for wearing a hat, plus one for not wearing a hat at all). In total, he has $2 \times$ $3 \times 2=\mathbf{1 2}$ possible ways to dress.

Student Name:

\qquad
8. What is the maximum number of 1×3 tiles that can be packed in a 5×5 grid with no overlap? (Rotation by 90 degrees is allowed.)

The answer is 8 , and surprisingly, the only way to do it is to not occupy the centre square. Please also note that floor $\left(\frac{25}{3}\right)=8$.

