"The Nine Chapters on the Mathematical Art" Contest (NCC) 2013 ©

Student Name:

\qquad

1. What is the value of \square in the equation $8+28=\square \times 4$?
$36=\square \times 4$, dividing 4 from by sides gives $\square=9$.
2. Following the order of operations, the result of $3 \times 8-6 \div 2=$?
$24-3=21$.
3. The perimeter of the shape below is 18 with $\mathrm{AB}=3, \mathrm{BC}=4, \mathrm{AD}=5$. What is the length of CD?

$3+4+5+\mathrm{CD}=18 \Rightarrow \mathrm{CD}=6$.
4. What is the largest 3-digit number you can make that uses the digits $0,5,2$ only once?

The largest 3-digit number should have the highest number in the hundredth digit, second highest number in the tenth digit and smallest number in the last digit. The answer therefore is 520 .
5. How many triangles are in the picture below? (Hint: The triangles can be different sizes)

We observe the following number of triangles in each size, so the total number is $9+3+1=\mathbf{1 3}$.

Student Name:

6. Grace picks some apples from her orchard to give to her friends Alice and Bob. She gave one more apple to Bob than to Alice. If Alice got 5 apples, how many did Grace pick in total?

Given Alice got 5 apples from Grace and Bob received one more apple than Alice, so Bob got 6 apples. Therefore, Grace picked $5+6=\mathbf{1 1}$ apples in total.
7. Andrea spent $\$ 23$ on strawberry and watermelon candies. She bought 4 strawberry candies which cost $\$ 2$ each. Given the watermelon candies cost $\$ 3$ each, how many watermelon candies did she buy?

Andrea bought 4 strawberry candies which cost $\$ 2$ each, so in total, Andrea bought $\$ 8$ Strawberry candies. Given Andrea spent $\$ 23$ on both strawberry and watermelon candies, she bought $\$ 23-\$ 8=\$ 15$ watermelon candies in total. If watermelon candies cost $\$ 3$ each, then Andrea bought $\$ 15 / \$ 3=5$ watermelon candies.
8. Consider the following game of tic-tac-toe on a 4×4 grid. The objective of the game is to place 3 X's (or O's) in a row: horizontally, vertically or diagonally. If it is X's turn to place, how many ways can he or she place the " X " to win immediately?

Shown as below, the " X " can be placed in any of the 6 grey boxes to result an immediate win.

x	x	O	
	x	O	O
x	x	x	x
	x		x

