4 Section D

D1
What is the units digit in 7^{2019} when expanded?

Answer to D1: \qquad

D2

A square is inscribed inside a circle such that its four vertices touch the circle's circumference. If the circle has an area of $128 \mathrm{~m} \mathrm{~cm}^{2}$, what is the perimeter of the square?

Answer to D2: \qquad

D3

The mean of five numbers is 6 . You want to increase the highest and lowest numbers by the same amount in order to make the numbers have a mean of 8 . What should you increase them by?

Answer to D3: \qquad

D4

What is the smallest prime number p such that $16 p+1$ is also prime?

Answer to D4: \qquad

D5
The year 2019 has 365 days, and January 1st, 2019 is on a Tuesday. How many Fridays are there in 2019?

Answer to D5: \qquad

D6

If we define the operation $\frac{\partial}{b} \oplus \frac{c}{d}=\frac{a+b}{c+d}$, with $\frac{\partial}{b}$ and $\frac{c}{d}$ fractions in lowest terms, then what is the difference between $\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}$ and $\frac{1}{1} \oplus \frac{1}{2} \oplus \frac{1}{3} \oplus \frac{1}{4} \oplus \frac{1}{5}$?

Answer to D6: \qquad

D7

Find the number of five-digit positive integers n that satisfy the following conditions:

- The number n is divisible by 5
- The first and last digits of n are equal
- The sum of the digits of n is divisible by 5

Answer to D7: \qquad

D8

How many 3-digit numbers are there, with the property that the digits are in strictly increasing order and the first digit divides the last? (e.g. 123 but not 222)

Answer to D8: \qquad

