Student Name:

Please write your name on every page.

6 Section F

F1
The volume of a cube is 64. What is the total length of all edges of the cube?

Answer to F1: \qquad

F2
What is the maximum possible area of a rectangle with perimeter 12 ?

Answer to F2: \qquad

F3

A fair 6-sided die is thrown 2018 times. Which of the following is the appoximate probability that it will land on 6 at least 328 times: $0.1,0.4,0.7$, or 1 ?

Answer to F3: \qquad

F4
What is the area of the smallest square that completely covers a triangle with side lengths 3, 4, 5?

Answer to F4: \qquad

F5
Mr. Liang's grade 10 class has 12 boys and 16 girls. For a class project, he randomly partners the students into groups of two. On average, how many groups will have one boy and one girl?
\qquad

Student Name:

Please write your name on every page.

F6

A palindrome is a number that reads the same forwards and backwards. For example, 12321 is a palindrome, as is 70207 or 8888888 . Find any two different whole numbers whose cubes ($n^{3}=n \times n \times n$ are 7-digit palindromes. Write both numbers, seperated by a comma, in the blank.

Answer to F6: \qquad

F7

Let n coins weighing 1, 2, ..., n grams be given. Suppose Baron Munchhausen knows which coin weighs how much, but his audience does not. Then a(n) is the minimum number of weighings the Baron must conduct on a balance scale, so as to unequivocally demonstrate the weight of at least one of the coins.

Values of $a(n)$ for small n are as follows:

- $a(1)=0$ as the audience already knows the only coin has weight 1
$\cdot a(2)=1$; the Baron may weigh $1<2$, identifying both
$\cdot a(3)=1$; the Baron may weigh $1+2=3$, which identifies the 3 -gram coin
- $a(4)=1$; the Baron may weigh $1+2<4$, which identifies the 3 -gram coin
- $a(5)=2$

What is a(8)?
\qquad

Student Name:

Please write your name on every page.

F8
A magic square is a grid of whole numbers such that the sum of each row or column is equal to the same number. One way to build a magic squares is to write the numbers in order with the "north-east" technique. Start by writing a 1 in the middle square on the top row. Until the entire square is full, write the next number in the square up and to the right (north-east) of the last number we wrote. If this goes outside the square, wrap around to the other side of the square. Sometimes, that square might already be full; if so, we write the number in the square below the last square (south) instead. See the picture below for an example on a 3×3 magic square:

8	1	6
3	5	7
4	9	2

If you do this process on a 63×63 magic square, what number will be in the top-left corner?
\qquad

