"The Nine Chapters on the Mathematical Art" Contest (NCC) 2017 ©
 Student Name:
 Please write your name on every page.

Section F

F1

Let x be the unique positive real solution to $2^{x}=\frac{8}{x}$. What is x ?

Answer to F1: \qquad

F2
How many words can you make using all of the letters in CANADA? (The words formed do not need to be English words; for example, ACNDAA is a word.)

Answer to F2:

F3
The drawing below shows analog clocks at around $2: 44$ and $8: 11$. At these times, the hour and minute hands are pointing in opposite directions. Between 1:00 AM and 11:59 AM on any day, how many times do hour and minute hands point in opposite directions?

Answer to F3: \qquad

F4

How many distinct integer solutions (p, q) are there to this equation?

$$
p^{2}+3 p q+2 q^{2}-p-q=41
$$

\qquad
"The Nine Chapters on the Mathematical Art" Contest (NCC) 2017 ©

Student Name:

Please write your name on every page.

F5
What is the maximum possible value of $3 x-y+z$ if x, y, z are real numbers such that $x \geq 0, y \geq 0, z \geq 0, x+2 y=5$, and $x+y+z=7$?

Answer to F5: \qquad

F6
Find the area of the shaded triangle.

Answer to F6: \qquad

F7
Define $F_{1}=1, F_{2}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$. (This is the Fibonacci sequence, and it starts $1,1,2,3,5,8, \ldots$.) Find $\operatorname{gcd}\left(F_{30}, 30\right)$, where $\operatorname{gcd}(a, b)$ denotes the greatest common divisor of a and b . You may use the fact that $30=2 \times 3 \times 5$.

Answer to F7: \qquad

F8
For all positive integers n, let $f(n)$ be a integer whose value depends on n. Suppose that $f(1)=1$ and that $f(2 n)=2 f(n)-1$ and $f(2 n+1)=2 f(n)+1$ for all n. Compute $f(1023)$.
\qquad

