Student Name:

1. What is the smallest positive integer such that, if we remove the leftmost digit, the resulting number is $1 / 33$ of the original integer?

Answer: \qquad
2. D divides AB in half $(a: b=1: 1)$. E divides AC in the ratio of $2: 1$, with AE being twice as long as EC $(c: d=2: 1)$. The area of triangle ABE is 1 . What is the area of triangle ACD?

Answer: \qquad
3. For a positive whole number n, define $n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots 2 \cdot 1$. For example, $4!=4 \cdot 3 \cdot 2 \cdot 1=24$, while $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$. How many zeros are at the end of 100 !?

Answer: \qquad

Student Name:

\qquad
4. Isaac and Carl play a tennis match, where the first person to win 3 sets wins the match. Assume that the players are equally skilled, so that each player is equally likely to win each set. Let x be the probability that the match finishes in exactly 4 sets. Let y be the probability that the match finishes in exactly 5 sets. Compute $\mathrm{x}-\mathrm{y}$.

Answer: \qquad
5. In Mike's aquarium, the ratio of gold fish to guppies is 5:4. After Mike buys 18 guppies, the ratio of gold fish to guppies is now $4: 5$. How many guppies did Mike originally have?

Answer: \qquad
6. A farmer has 100 meters of fencing and he wants to construct a rectangle to fence off as much area as possible. Fortunately, there is a river in his fields (in the shape of a straight line) that he can use as one side of the fence. What is the maximum area he can surround using the fence and the river?

Answer: \qquad m^{2}
7. Let's call a number 'bizarre' if it is a multiple of 9 , but the sum of its digits is not 9 . How many bizarre numbers are there from 1 to 1000 ?

Answer: \qquad
8. What is the remainder when

$$
2^{9^{9^{9}}}+3^{2^{2}}
$$

is divided by 7 ?
Answer: \qquad

