1. What is the smallest positive integer such that, if we remove the leftmost digit, the resulting number is $1 / 33$ of the original integer?

Answer: 825

* Clearly the number cannot be 1-digit. If the number was 2-digit, then let the digits be $A B$. We have $B=\frac{1}{33}(10 A+B)$
$33 B=10 A+B$
$16 B=5 A$
$B=\frac{5}{16} A$
This means, to make B a positive integer, A is at least 16, which cannot be, since A is a digit (so it is from 0 to 9).
So let's now try 3-digit numbers. Let the number be $100 a+b$ where $1 \leq a \leq 9,0 \leq b \leq$ 99. We have $b=\frac{1}{33}(100 a+b)$
$33 b=100 a+b$
$8 b=25 a$
Thus $a=8, b=25$ works. So 825 is the answer.

2. D divides AB in half $(a: b=1: 1)$. E divides AC in the ratio of $2: 1$, with AE being twice as long as EC $(c: d=2: 1)$. The area of triangle ABE is 1 . What is the area of triangle ACD?

Answer: 3/4

* We use the fact that if two triangles have the same base, their areas are proportional to their heights.
$A B C$ has the same base $A B$ as $A B E$, but $3 / 2$ the height since $A C: A E=3: 2$. Thus $A B C$ has area $3 / 2$.
$A B C$ and $A D C$ have same base $A C$, but half the height, since $A D: A B=1: 2$. Thus ADC has area 3/4.

3. For a positive whole number n, define $n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots 2 \cdot 1$. For example, $4!=4 \cdot 3 \cdot 2 \cdot 1=24$, while $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$. How many zeros are at the end of 100 !?

Answer: 24

* To make a zero, we need a factor of 2 and a factor of 5. 100! Will have more 2 's and 5 's, so we only care about how many factors of 5 it has. Each multiple of 5 gives a factor of 5 to 100!, while the 4 multiples of $25(25,50,75,100)$ give an extra factor of 5 . There are $100 / 5=20$ multiples of 5 from 1 to 100 . So in total there $20+4=$ 24 factors of 5 . So there are 24 zeros at the end of $100!$.

4. Isaac and Carl play a tennis match, where the first person to win 3 sets wins the match. Assume that the players are equally skilled, so that each player is equally likely to win each set. Let x be the probability that the match finishes in exactly 4 sets. Let y be the probability that the match finishes in exactly 5 sets. Compute $\mathrm{x}-\mathrm{y}$.

Answer: 0

* Solution 1: We can think of a match as a word with only letters I and C, where I means Isaac won the set, and C means Carl won the set. For example, ICII means Isaac won sets 1, 3, 4 with Carl winning set 2, and the match finishing in 4 games. The number of ways for the match to finish in exactly 4 games requires each player to win at least 1 of the first 3 games. So the possibilities are
ICII CICC IICI CCIC CIII ICCC

The number of ways for the match to finish in exactly 5 games requires each player to win exactly 2 of the first 4 games. The number of ways this could happen is $\binom{4}{2}=6$, with the possibilities being

IICC CIIC ICIC CICI ICCI CCII
Thus the probability of the match finishing in 4 games is equal to the probability of the match finishing in 5 games. So $x-y=0$.

Solution 2: Assume that the match doesn't finish in 3 sets, so it finishes in either 4 or 5 sets. So after 3 sets, one person is ahead 2-1. If that person wins, the match finishes in 4 sets. Otherwise, the match finishes in 5 sets. Therefore, the chances that the match finishes in 4 sets is equal to the chances that the match finishes in 5 sets. So $x-y=0$.
5. In Mike's aquarium, the ratio of gold fish to guppies is 5:4. After Mike buys 18 guppies, the ratio of gold fish to guppies is now 4:5. How many guppies did Mike originally have?

Answer: 32

* Let Mike originally have x gold fish and y guppies, $\frac{x}{y}=\frac{5}{4}$. So $4 x=5 y$.

But $\frac{x}{y+18}=\frac{4}{5}$ or $5 x=4 y+72$
$20 x=16 y+4 \cdot 72$
$5 \cdot 5 y=16 y+4 \cdot 72$
$9 y=+4 \cdot 72$
$y=32$
Mike originally had 32 guppies.
6. A farmer has 100 meters of fencing and he wants to construct a rectangle to fence off as much area as possible. Fortunately, there is a river in his fields (in the shape of a straight line) that he can use as one side of the fence. What is the maximum area he can surround using the fence and the river?

Answer: $1250 \mathrm{~m}^{2}$

* Let x be the length of the fence perpendicular to the river. So the length of the fence parallel to the river is $100-2 x$, and the enclosed area is $x(100-2 x)=100 x-2 x^{2}$.
This is a downward opening parabola. Its maximum occurs at $x=25$ since its roots are 0 and 50. Thus the maximum area he can fence off is $25(100-2 \times 25)=25 \times 50$ $=1250 \mathrm{~m}^{2}$.

7. Let's call a number 'bizarre' if it is a multiple of 9 , but the sum of its digits is not 9 . How many bizarre numbers are there from 1 to 1000 ?

Answer: 56

* The digits must sum to a multiple of 9, by the divisibility rule for 9. Thus they must sum to 18 or 27; they cannot sum to larger than 27.
Sum 18: Let the number be ABC (1000 does not work so we can assume the number is 3 digits or less).
- $A=0: B=C=9$ is the only possibility.
- $A=1: B=9, C=8$ or vice versa, so 2 possibilities.
- $A=2: B=9$, 8 , or 7 , so 3 possibilities.
- $A=3: B=9,8,7$, or 6 , so 4 possibilities.
- $A=4: B=9,8,7,6$, or 5 , so 5 possibilities.
- $A=5: B=9$, ... or 4 , so 6 possibilities.
- $A=6: B=9$, ... or 3, so 7 possibilities.
- $A=7: B=9$, ... or 2 , so 8 possibilities.
- $A=8: B=9$, ... or 1 , so 9 possibilities.
- $A=9: B=9$, ... or 0 , so 10 possibilities.

Sum 27: Only possibility is 999.
\therefore In total there are $(1+2+\ldots+9+10)+1=56$ numbers.
8. What is the remainder when

$$
2^{9^{9^{9}}}+3^{2^{2}}
$$

is divided by 7 ?
Answer: 5

* The remainders when powers of 2 are divided by 7 follow the pattern 2, 4, 1, 2, 4, 1, Since $9^{9^{9}}$ is a multiple of 3 , the remainder will be $1.3^{2^{2}}=3^{4}=81$; the remainder when 81 is divided by 7 is 4 . So $2^{9^{9^{9}}}+3^{2^{2}}$ is divided by 7 is $1+4=5$.

