1. Alice owns 3 dogs, each of which weighs 35 pounds. After buying a cat, the average weight of her 4 pets becomes 30 pounds. How many pounds does Alice's cat weigh?

Answer: 15 pounds

* The total weight of Alice's pet was $3 \times 35=105$ pounds. Let x represent the weight of her cat. We have $\frac{105+x}{4}=30$
$105+x=120$
$x=15$ pounds.

2. $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}=36$, and $\mathrm{A}-2=\mathrm{B}+2=\mathrm{C} \div 2=\mathrm{D} \times 2$. What is C ?

Answer: 16

* Let $k=A-2=B+2=C \div 2=D \times 2$. So $A+B+C+D=36$ says
$(k+2)+(k-2)+2 k+k / 2=36$
$4 k+k / 2=36$
$9 k=72$
$k=8$
Thus $C / 2=8, C=16$.

3. A school has 6 periods and must teach math, gym, art, science, history, and English in these 6 periods. If math can only be taught in period 1, 2 or 3, and gym can only be taught in period 4,5 or 6 , how many ways are there to schedule the classes?

Answer: 216

* We must assign a period number (1, 2, 3, 4, 5 or 6) to math, gym, art, science, history, and English. There are 3 ways to assign a number to math, and 3 ways to assign a number to gym, so 9 ways total to assign a number to math and gym (note math and gym do not fight for the same periods). Once math and gym are decided, there are $4!=24$ ways to arrange art, science, history, and English. Thus there are $9 \times 24=216$ ways in total to schedule the morning.

4. A circular pizza with diameter 10 " costs $\$ 20$. If all pizzas were to have the same cost to area ratio, then what should be the cost of a square pizza with side length 12 " (exact answer or rounded to 2 decimal places)?

$$
\text { Answer: } \frac{576}{5 \pi} \text { or } \$ 36.67
$$

* The cost to area ratio of the circular pizza is $\frac{20}{\pi(5)^{2}}=\frac{4}{5 \pi}$. The area of the square pizza with side length 12 is 144 . Thus the cost would need to be $\frac{4}{5 \pi} \cdot 144=\frac{576}{5 \pi}$ or $\$ 36.67$.
Note: The answer using $\$ 36.69$ is also accepted; it is obtained by using 3.14 for π instead of more decimal places.

5. A triangle has integer side lengths and perimeter 24 . If one side is twice as long as another side, what is the length of the third side?

Answer: 9

* Let $x, 2 x$, and y be the 3 side lengths. We have $x+2 x+y=24$, or $3 x+y=24$. But x, y must be integers. Further more, the sum of two sides cannot be less than half the perimeter. So $3 x>12$ or $x>4$. If $x \geq 6$ then $y \leq 6$, so $x+y=12$, which cannot be since the sum of two sides is at least 12 . We can check that $x=5,2 x=10, y=9$ works. Thus the length of the third side is 9 .

6. A bucket filled with water has total weight 10 kg , and 99% of this total weight comes from water. After a while, some water evaporates so that only 98% of the total weight now comes from water. What is the total weight of the bucket of water now?

Answer: 5 kg

* Originally, the bucket weighs 10 kg total, with 99% of its weight coming from water. So the bucket weighs 0.1 kg . After the water evaporates, the bucket needs to weigh 2% of the total weight. So (0.02) $\cdot($ Total Weight $)=0.1 \mathrm{~kg}$ Total weight $=5 \mathrm{~kg}$.

7. In the figure, E is the midpoint of AB , and F is the midpoint of BC . What fraction of the entire square is shaded?

Answer: 3/8

* Let's consider what fraction of the square isn't shaded. ADE is half of the half square (it is half of rectangle AEMD, where M is the midpoint of DC), so it is $1 / 4$ the square. Similarly CDF is $1 / 4$ the square. BEF is $1 / 8$ the square. So the unshaded fraction is $1 / 4+1 / 4+1 / 8=5 / 8$. So $3 / 8$ of the square is shaded.

8. In the diagram below, assuming the triangles are isosceles, what is the surface area of the triangular prism?

Answer: $152 \mathrm{~cm}^{2}$

* Let m be the midpoint of $A C$. Since $B m=4 \mathrm{~cm}$ and $m C=3 \mathrm{~cm}, B C=5 \mathrm{~cm}$, by the Pythagorean theorem.
"The Nine Chapters on Mathematical Art" Contest (NCC) 2009 ©

$$
\begin{aligned}
& \operatorname{Area}(A B C)=\operatorname{Area}(D E F)=\frac{1}{2}(6)(4)=12 \mathrm{~cm}^{2} \\
& \text { Area }(A C F D)=6 \cdot 4=48 \mathrm{~cm}^{2} \\
& \text { Area }(A B D E)=\operatorname{Area}(C B E F)=5 \cdot 8=40 \mathrm{~cm}^{2} \\
& \therefore \text { Total surface area is } 2(12)+48+2(40)=152 \mathrm{~cm}^{2}
\end{aligned}
$$

